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RADIATIVE TRANSFER TO OSCILLATORY 
HYDROMAGNETIC ROTATING FLOW OF A RAREFIED 

GAS PAST A HORIZONTAL FLAT PLATE 
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Mathematics Department, University of Port Harcourt, Choba, P M B  5323, Port Hartcourt, Nigeria 

SUMMARY 

Hydromagnetic flow past an infinite horizontal plate is considered when the flow is rarefied and the 
temperature of the wall is high enough for radiative heat transfer to be significant. In the undisturbed flow far 
away from the plate, an oscillatory velocity is superimposed on a steady mean and the whole configuration is 
in constant rotation. When the flow is slightly rarefied, the compressible Navier-Stokes equations and the 
slip boundary conditions together with the general differential approximation for radiation suffice for the 
analytical description of the problem. If the amplitude of oscillation is small, the problem is tackled by a 
perturbation scheme and numerical integration. Consequences of the effect of rotation and oscillation on the 
flow variables are discussed. 
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1. INTRODUCTION 

The problem of rarefied and electrically conducting gas flow is applicable in ultrahigh-altitude 
aerodynamics and in fission research. On the other hand, oscillatory flow is of natural and 
frequent occurrence in aeronautical work with attendant problems, notably in flutter. Hence the 
motivation for this study. 

An important parameter in the study of rarefied gas dynamics is the ratio of the mean free path 
of the gas, I, to a characteristic length of flow, this parameter being referred to as the Knudsen 
number, Kn.  When K n  is zero, continuum theory is valid. However, for small K n  it is still 
appropriate to adopt continuum theory and, as discussed by Shidlovskiy,' the continuum 
hypothesis gives very good results even when K n  is of order O(1). 

The general feature of slightly rarefied gas flow past a solid body is clarified in the asymptotic 
theory developed in References 2 4 .  In brief, the theory gives a systematic derivation of the 
classical slip flow theory from the linearized Boltzmann equation including higher-order 
contributions in the Knudsen number. Thus the boundary condition for the O( 1) case is the no-slip 
condition of classical fluid dynamics. In the order O ( K n )  approximation the slip boundary 
condition gives the first-order correction to classical theory. 

Hence in this study we employ the compressible Navier-Stokes equations and the slip 
boundary conditions, while the radiative flux term is also accommodated by adopting the general 
differential approximation for radiation. The whole problem is therefore reducible to differential 
equation form, and the formulation is given in Section 2. Section 3 is devoted to a solution of the 

027 1-209 1 /89/040375-10$05.O0 
0 1989 by John Wiley & Sons, Ltd. 

Received ]December 1986 
First Revision 20 August 1987 

Second Revision 18 February 1988 



376 A. R. BESTMAN 

basic approximation, while in Section 4 the higher approximate solutions are developed. The 
results of the previous three sections are discussed in Section 5. 

2. MATHEMATICAL FORMULATION 

We consider oscillatory flow U,(1 +ECOS o t ’ )  past a horizontal flat plate, where U ,  is a typical 
velocity, o is frequency, t’ is time and E is a parameter. The plate is maintained at a temperature To 
which is large enough for radiation to be significant. A magnetic field H ,  is applied perpendicular 
to the plate in the y’-direction. The whole configuration rotates with angular velocity f2 about this 
perpendicular, which points in the reverse direction to gravitation g. The flow is therefore two- 
dimensional in the Cartesian (x’, y’) co-ordinate with the x’-axis lying on the plate, such that the 
velocity, magnetic field and radiative flux components are (u’, u’), (IT, H,) and (0, 4’). 

now make the following assumptions: 

The flow is slightly rarefied so that the compressible Navier-Stokes equations and the slip 
boundary conditions may be adopted, such that in the slip conditions x is the reflection 
coefficient and A the accommodation coefficient. 
The general differential approximation for radiation may be invoked, in which case a, is the 
absorption coefficient, or is the Stefan-Boltzmann constant and E, is the emittence of the 
wall. 
The gas is perfect such that p‘ =p‘RT and cp is constant, while the square of the speed of 
sound is a’ = y p ’ / p ’ ,  p’ is the pressure, p’ the density, T the temperature, R the gas constant, 
cp the specific heat at constant pressure and y the ratio of the specific heats. 
The viscosity of the fluid, p, is proportional to the temperature, while the Prandtl number 
Pr( = p c p / k )  is constant, where k is the thermal conductivity. 
The fluid is electrically conducting with conductivity gC, so that in electromagnetic units the 
permeability of free space is unity. 

Since the plate is infinite, all variables will depend on y and t alone. With this and the 
assumptions enumerated above, the governing non-dimensional equations of motion may be 
written as 
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such that 

2 - x ~ ~  au 
x 16 aY y=--Kn--, u = o ,  

Po 

(t-+ -: $=A:( e;: - 04) h=O ony=O 

u = l  +&Cost, ( ~ ~ 4 ,  h ) - 4  (e, PI+ 1 as Y -, a, (3) 
where subscript co denotes uniform flow conditions. We have adopted the general differential 
approximation for radiation for a grey gas as given by Cheng.5 

We have introduced the following non-dimensional quantities: 

t =at', 

The kinematic viscosity of the fluid v is defined as v=p/p.  
The slip boundary conditions on the velocity, temperature and pressure are as given in 

Shidlovskiy,l while that on the radiative flux is due to C e s 6  The condition on the magnetic field 
assumes that the wall is a perfect insulator. Apart from Pr and Kn, the problem also depends on 
the oscillatory parameter u, the rotation parameter E ,  the ratio of kinematic viscosity to the 
magnetic diffusivity D,, the magnetic parameter M, the buoyancy parameter F ,  , the Mach 
number M ,  and the radiation parameters N and B,. The mathematical statement of the problem 
is to solve (1) subject to (2) and (3). 

3. PERTURBATION AND LEADING SOLUTION 

To tackle the problem posed in the previous section, we introduce the expansion (assuming E is 
small) 

(54 u = u(O)(y) ++&[u(')(y)e"+ ii(l)e-if] + . . . 
for all the dependent variables except u, while for u we write 

D=$&[U(')(y)eit + $')e"'J + . , 
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Substituting (5) in (1H3), the order 0(1) problem is 

where 

The solutions of equation (6) subject to the appropriate conditions in (9) and (10) have been 
discussed exhaustively by Be~t rnan .~  All three possible cases were considered. 

such that 

(ii) Optically thin case 
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where O* follows from the equation 

( 4 ~ " ) -  1)0*6 + 2008*5 + 8i#*4 - 1 ~ C ( O ) O * ~  - 8 d 0 )  = 0, 

cio)li2 = K n i o ) P r ' i 2 8 , / 4 B ~ i Z  and g~ is the Weierstrass elliptic function. 

(iii) Arbitrary optical thickness 

where 

U ~ O * ~ ~ + U ~ O * ' ' +  . . . +ajo*12-j+ . . . +u,le*+a,2=o. 

The coefficients of the polynomial, which are quite complicated, have been given in Reference 7 
and will not be repeated here. A brief account is given in the Appendix. 

Now that 8 ( O )  and dO(O)/dy are known, equations (7) become linear and with the concomitant 
boundary conditions could be integrated by a finite difference scheme employing central 
differences. With u and h known, equation (8) could be expressed as 

which is a first-order linear equation for the single unknown p"). Integrating equation (1 1) and 
imposing the condition on the density at y =  co, we can show that 

The point y =  co is taken to correspond to B(O)(y)= 1. For the optically thick gas the integral 
Sdy/O(0) may be evaluated in a close form by changing the variable of integration to fY0). Thus 

) (13) 
4 ~ 3 ,  (p)-  1)114(p" + 1)1/2 

- 4B dO(" I$= -& I@0)(0(0)4 - 1)  - - m i ' (  p )  

and the labour of numerical integration of ( 1  2 )  is reduced, particularly if the effect of change of E is 
negligible in which case only single integrals are involved. It will be shown that this is so. 

Finally with, pC0)  now determined, the unknown pressure at the wall, p o ,  can be computed from 
the remaining pressure jump condition. Thus 

The solution is now complete and the value po is used in the subsequent calculation. 
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In this section we have employed the finite difference algorithm in obtaining solutions for the 
velocity and magnetic field components. Indeed, the finite difference scheme is all that will be 
adopted in discussing the order O(E) solutions of the subsequent section. Hence it is necessary to 
have a knowledge of the error involved in the use of this scheme. 

Thus equations (7) could be expressed in the form 

Setting do)= 1 + 6(')'/' U(O), these equations become 

h(0) = - D, Joy @o) 1 /2  U (0)dz. 

We now consider the case when D,M2 ,> 1, whence the equation for U(O) approximates to 

The asymptotic solution of this last equation may be obtained by the WKB approximation. 
Retaining only the eikonal and transport terms, the solution satisfying the appropriate boundary 
condition 

Hence h(O) follows. All the integrals involved are evaluated by an efficient Romberg numerical 
scheme. 



, 

In equations (16) we have replaced the du(')/dy term in the temperature and density boundary 
conditions by the continuity in (15). Equations (15) and (16) constitute a linear coupled two-point 
boundary value problem for the six unknowns d'), d'), /I('), q(l), pfl) and 0"). By expressing the 
unknowns in terms of their real and imaginary parts, the problem is tackled by a finite difference 
scheme, again using central differences. 

5. DISCUSSION 

In the numerical discussion of the problem we shall only consider the effect of rotation E and 
magnetic field M on the flow variable. The effects of the other parameters have been considered 
previ~usly.~ Hence we take 8, = 10, N = 0.33, B,  = 1.0, M ,  = 0.2, F ,  = 0.1 = Kn, x =0.9 = 1, 
Pr=0.71, y=1.4, c,=1/2 and &=0*1. 

In Figures 1-3 the velocity component parallel to the plate, the temperature and the magnetic 
field are depicted for the general differential approximation for a grey gas. Thus 

u = do) + c(ukl) cos t --ujl) sin t), etc., (7) 

where subscripts R and I represent real and imaginary parts of a complex quantity. 
It is noted that an increase in the magnetic parameter M 2  causes a rise in the flow variables. 

However, whether the rotation rate is slow or fast, the flow variables remain essentially unaltered. 
This last effect is very useful in the computation of the density p ( O )  in equation (12). Indeed, the E 

terms in the integrals involving the exponential terms may be replaced by a mean and, as shown by 
Be~ tman ,~  the error incurred in using the optically thick approximation is not much when 
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Figure 1. Velocity distribution: 1, E=05, M 2  = 5; 11, E=05, M 2  = 10; 111, E =  10, M 2  = 10 
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Figure 2. Temperature distribution (for key see Figure I) 
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Figure 3. Magnetic field distribution (for key see Figure 1) 

compared with the exact differential approximation. To be precise, this error is of the order of 
about 5%.  The computational time saved in using these approximations is as much as 1 h on a 
PDP 11/70. Thus for the full first-order solutions of equations (16), depicted in Figures 1-3, the 
computational time was 2i  h. When the optically thick gas approximation is made, the time 
reduces to 1 i  h, with a maximum error of 5% on the values in Figures 1-3. 

Finally, we discuss the errors involved in the finite difference scheme and the convergence of the 
asymptotic series expansion. First of all we compare the solutions of equation (10a) for 6 small 
with the corresponding finite difference results on equations leading to (10a). In principle we keep 
D, fixed and choose M such that 6+1 .  We find that when 6=0.1 the asymptotic and finite 
difference solutions (for y = O l )  differ by 2.7%. If 6 is further reduced to 001, this difference 
becomes 1.5%. In either case the finite difference solution is larger than the asymptotic one. Also if 
the numerical experiment is re-run with e=0-01 rather than 0.1, but with the other parameters 
kept fixed as given above, u, 8 and h increase by less than 0.5%. We conclude that both the finite 
difference scheme and the two-term asymptotic series representation give stable and convergent 
solutions. 

APPENDIX 

We give a brief account of the polynomial solutions for temperature in the order O( 1) case given in 
Section 3. For the general differential approximation for a grey gas the one-dimensional equation 
for the flux is 

d2q 3 3 d0 ___- --03-=0 
dy2 N2' B,  dy ' 
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in which the temperature is given by 

We consider the following cases. 

(i) Optically thin (a, 4 1 and N large) 

The approximation for the flux is 

which together with the temperature equation results in a polynomial of sixth degree in the 
determination of the temperature. 

(ii) Optically thick (a,% 1 and N small) 

It is usual to discard the d2q/dy2 term in the general flux equation for this approximation. 
However, when the space is semi-infinite, this approximation may prove troublesome except for 
flows with suction.* In this case we replace 

d2q 3 

by 

to get 

3 d9 ___  
N2dy 

and this equation with (19) gives rise to a quartic equation. 

(iii) The general case 

This is tackled in the spirit of Bestman.’. * 
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